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A large quantitative analysis 
of written language challenges 
the idea that all languages are 
equally complex
Alexander Koplenig *, Sascha Wolfer  & Peter Meyer 

One of the fundamental questions about human language is whether all languages are equally 
complex. Here, we approach this question from an information-theoretic perspective. We present 
a large scale quantitative cross-linguistic analysis of written language by training a language model 
on more than 6500 different documents as represented in 41 multilingual text collections consisting 
of ~ 3.5 billion words or ~ 9.0 billion characters and covering 2069 different languages that are spoken 
as a native language by more than 90% of the world population. We statistically infer the entropy 
of each language model as an index of what we call average prediction complexity. We compare 
complexity rankings across corpora and show that a language that tends to be more complex than 
another language in one corpus also tends to be more complex in another corpus. In addition, we show 
that speaker population size predicts entropy. We argue that both results constitute evidence against 
the equi-complexity hypothesis from an information-theoretic perspective.

Language is one of our most complex traits1. But how complex is it? And are all of the ~ 7000 distinct languages 
on earth equally complex—or not2? Quantifying the statistical structure and complexity of human language is 
essential to understanding a large variety of phenomena in linguistics, the study of human culture and natural 
language processing from language learning to language evolution and from the role of culture in shaping cogni-
tive skills to the creation of artificial intelligence1,3–10.

The equi-complexity hypothesis, i.e. the idea of a principle of “invariance of language complexity”2, has 
been a longstanding and largely unquestioned assumption in modern linguistics11–19. In recent times, however, 
researchers have begun to challenge and scrutinize this “axiom”20–22. While nowadays there is more consensus 
that the complexity of languages (and language varieties) can vary both in different sub-domains of linguistic 
description and overall21–23, there has not been, to the best of our knowledge, a large scale quantitative evaluation 
of the equi-complexity hypothesis. Apart from collecting suitable test data, such an evaluation has to overcome 
the difficulty of measuring overall language complexity in the first place22,24: given any of different linguistic sub-
domains for which there is a proposed complexity measure (e.g., measures of morphological, syntactic, referential 
complexity), it would not be reasonable to simply sum these measures. Therefore, it has been claimed that it is 
in fact impossible to measure overall complexity of a language24. Notwithstanding this difficulty, a test of the 
equi-complexity hypothesis is important both with respect to practical aspects of natural language processing25 
and from a theoretical point of view21. For example, a roughly equal degree of overall complexity would point 
towards “some internal mechanism that stems from human communication patterns, or from the limitations of 
the human brain”24 and thus could help to further understand the cognitive/neural architecture of language26, for 
example by linking equality in language complexity to recently revealed general similarities in the way different 
languages are neurally processed27.

Here, we build on information theory, an area of mathematics that links probability and communication28 
and provides notions of complexity that are both objective and theory-neutral29. To measure complexity, we 
use a statistical coding approach30 where the relevant conditional probability distributions are learned from 
written text data, so-called corpora29,31,32. To this end, the fuzzy notion of complexity as some kind of vector of 
separate values each measuring complexity in different linguistic sub-domains28 is replaced by a measure that is 
related to predictability – the better the next symbol in a sequence from a language can be predicted, the lower 
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the complexity of this language. Providing a blueprint for the quantitative study of the statistical character of 
language, Shannon33,34 showed that prediction, probability and understanding are intimately related35,36 by dem-
onstrating that humans are very good (in fact until very recently much better than any machine37,38) in predict-
ing subsequent linguistic material based on previous input. Since Shannon’s seminal work, numerous studies 
have revealed that adults, children and even infants show an extraordinary ability to (unconsciously) exploit 
statistical information on different levels in the input they receive in order to efficiently predict/process linguistic 
material39–41. One of the key quantities in information theory is the average per-symbol information content or 
entropy rate h28: since, due to grammatical, phonological, lexical and other regularities governing language use, 
not every sequence of symbols is allowed42, h both (i) measures how much choice a writer has when selecting 
successive symbols and (ii) quantifies the reader’s uncertainty when predicting upcoming symbols33. In what 
follows, we show that h can also be interpreted as a complexity metric43: the harder it is, on average, to predict 
upcoming text—i.e. the higher the value of h—the greater is the complexity of the text as a whole42,44–46. Here, 
we argue that h can thus also be used to compare the complexity of different languages.

Estimating entropy as a measure of average prediction complexity
Following Ref.47, we represent a text κ as a random variable that is created by drawing (with replacement) from 
a set of symbol types V = {s1, s2, s3, . . . , sV } , where V is the number of distinct symbol types, i.e. V = |V| . 
Depending on the chosen level of analysis, symbol types are taken to be either (Unicode) characters or word 
types. Correspondingly, a symbol token is any reoccurrence of a symbol type47. We can then count how often 
each symbol appears in κ and call the resulting frequency fj , and can then represent κ as a distribution of symbol 
frequencies. In order to quantify the amount of information contained in κ, we can calculate the Gibbs-Shannon 
entropy H of this distribution as28:

where p
(
sj
)
=

fj∑V
j=1 fj

 is the maximum likelihood estimator of the probability of sj in κ consisting of 
∑V

j=1 fj 

tokens. In what follows, all logs are to the base two, so the quantities are expressed in bits. H(κ) can be interpreted 
as the average number of (yes/no) guesses that are needed to correctly predict the type of a symbol token that is 
randomly sampled from κ.

The entropy rate or per-symbol entropy of a stochastic process can be formally defined as28,47:

where tN1 = t1, t2, . . . , tN represents a block of consecutive tokens of length N and HN (κ) denotes the so-called 
block entropy of block size N31,47.

Following Ref.43, we define FN as the prediction complexity of tN given t1, t2, . . . , tN−1 as follows:

FN quantifies the uncertainty of the Nth symbol, given all preceding tokens tN−1
1  . Assuming a stationary 

stochastic process28,47, FN reaches the entropy rate h as N tends to infinity28,43:

In analogy to H(κ), the entropy rate h(κ) can be informally understood as the average number of guesses that 
are needed to guess the next symbol of a sequence and thus incorporating the notion that prediction and under-
standing are intimately related7,31. Information can then be defined as any kind of knowledge that, when in your 
possession, allows you to make predictions with greater accuracy than mere chance48,49. Thus, h encompasses 
complexity from various linguistic sub-domains, since any form of linguistic (e.g. grammatical, phonological, 
lexical, pragmatic) or non-linguistic (e.g. world) knowledge42 will help a reader or listener to predict more 
accurately and will therefore reduce h.

To estimate h(κ) in an experimental setting, a guessing method can be used. Here, human subjects are repeat-
edly presented with N—1 tokens of a text and are then asked to guess the symbol type sj of tN . It can be 
shown28,34,48,50 that the minimum number of guesses needed to correctly predict symbol type sj is directly related 
to the conditional probability p

(
tN = sj|t

N−1
1

)
 of j given the corresponding context as −logp

(
tN = sj|t

N−1
1

)
 . 

Thus, assuming that the subject always follows an optimal guessing strategy48, an estimate of the average predic-
tion complexity h(κ) of a text κ can be computed by taking the average of the logarithms.

FN is one of the central properties of surprisal theory51,52. This theory suggests that language processing 
involves generating and updating predictions about upcoming words or linguistic structures based on the con-
text. Following from that, the surprisal theory states that the processing difficulty in incremental language 
comprehension (measured, for example, via reading times or ERP magnitudes) is a function of FN . The effect of 
surprisal (or self-information) can be shown for a variety of psycholinguistic phenomena like word or construc-
tion frequency effects, syntactic garden paths, and anti-locality effects29. This shows how information-theoretic 
measures can be used to predict the relative processing complexity of sequential linguistic data, for example in 
psycholinguistic experiments.
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Against this background, parallel corpora offer an intriguing source of data because they can be considered 
translational equivalents53: parallel texts are basically texts in different languages containing the same message. 
Therefore, potential differences in prediction complexity cannot be attributed to differences in content, style or 
register25,54 (for a discussion of potentials confounds see Refs.53–58). We now call κ a parallel corpus that consists 
of individual texts κi , where i denotes 1,…, I different languages. To test the question of whether all languages 
are equally complex, one could propose an experiment utilizing human subjects with i = 1,…, I different differ-
ent native languages. In such an experiment, each participant would be presented with an individual text κi , in 
order to compute h(κi) for each participant/language. The resulting variable h(κ) maps each individual text κi to 
its computed entropy rate, h(κi) . According to the equi-complexity hypothesis, the variance of h(κ) , Var[h(κ)] , 
should not be significantly different from zero. However, the validity of such a conclusion ultimately rests on 
a ceteris paribus assumption: do all participants share the same level of individual language proficiency, is the 
selected text representative for the I different languages or are there potential language-specific characteristics, 
or cultural and contextual factors that could bias the results? Thus, the fact that Var[h(κ)] > 0 alone would not 
constitute strong evidence against the equi-complexity hypothesis. Instead, the experiment could be repeated 
with different experimental subjects and a different parallel corpus ι that is compared with parallel corpus κ, 
by estimating both h(κi) and h(ιi) for i = 1,…, I. If the equi-complexity hypothesis holds true, we could rank 
the values of both h(κ) and h(ι) . We could then correlate the resulting complexity rankings R(κ) and R(ι) , i.e. 
we could compute the Spearman correlation coefficient ρ[h(κ), h(ι)] . It would constitute evidence in favour of 
the equi-complexity hypothesis if ρ[h(κ), h(ι)] were not significantly greater than zero. Extending this line of 
reasoning to a scenario where multiple different parallel corpora are being considered, we should expect that 
the expected or average value of ρ[h(κ), h(ι)] , E{ρ[h(κ), h(ι)]} , computed based on all parallel corpus pairs ( κ,ι ) 
where κ  = ι , should be close to zero if the equi-complexity hypothesis holds true. On the other hand, it would 
constitute evidence against the equi-complexity hypothesis if E{ρ[h(κ), h(ι)]} ≫ 0.

However, employing a guessing method in a multi-text and multi-language scenario as outlined above would 
be highly impractical. As argued by Kolmogorov (as characterized in Ref.48), for a precise estimation of h(κ) , 
given that the preceding N—1 symbols are known, guessing subjects would effectively need to accurately specify 
the conditional probability for any potential symbol type. That is, at any point N in the text, subjects would need 
to accurately indicate p

(
tN = sj|t

N−1
1

)
 for any symbol type sj ∈ V . As reported by Ref.43, even in a comparatively 

simple scenario, where subjects were asked to specify probability distributions for 27 different characters (A-Z 
and space), the majority of the subjects aborted the experiment. While this problem could potentially be cir-
cumvented by greatly increasing the number of human subjects43,48, the resulting experiment would be both very 
intricate and extraordinarily expensive. In addition, humans have a tendency to assign biased probabilities to 
rare events59,60. This tendency poses a significant challenge in the context at hand, as word frequency distribu-
tions typically comprise a large number of rare events61. An alternative to estimating h(κ) that does not rely on 
human subjects is to use computational language models (LMs). In this context, cognitive scientists and com-
putational linguists have pointed out that LMs, most notably exemplified by the widespread success of OpenAI’s 
ChatGPT chatbot, provide a computational working model for empirically studying various aspects of human 
language62–64. Note that training such models aims to minimize FN by generating the most accurate and probable 
next symbol based on the context provided by the preceding symbols. This means that during training, the model 
forms probabilistic expectations about the next symbol in a text and uses the true next symbol as an error signal 
to update the model’s latent parameters63. The concept of using a text prediction criterion to uncover fundamental 
aspects of the underlying linguistic system can be traced back to the pioneering work of Elman65, who demon-
strated that by employing this criterion, language models are capable of uncovering crucial elements within the 
language structure, thereby contributing to our understanding of language processing and generation63. Modern 
LMs greatly expand upon the foundations laid by Elman in their ability to predict text and reveal deeper insights 
into the underlying linguistic system62. In addition and again illustrated by ChatGPT, training modern LMs to 
learn to predict upcoming linguistic material allows the LM to produce language that is to a great extent indis-
tinguishable from the language it has been trained on42,63.

To estimate h(κ) from corpus data, we make use of the fact that machine learning of natural languages can 
be seen as equivalent to text compression42,66,67. In particular, we focus on the wide class of compressors that 
consist of an LM and an entropy coder: the LM generates predicted probabilities p

(
tN = sj|t

N−1
1

)
 for the upcom-

ing symbols given the past that are then taken by the entropy coder to perform compression by coding symbols 
with code length −logp

(
tN = sj|t

N−1
1

)
7,68. Leveraging available corpora and multilingual text collections69–72, 

we compiled a database of parallel texts comprising a large variety of different text types, e.g. religious texts, 
legalese texts, subtitles for various movies and talks, and machine translations. Where necessary (and possible), 
we developed computational routines that made sure that the resulting corpora are as parallel as possible (see 
Methods: “Corpora” and Supplementary Fig. 1 for a quantitative description of the database). In addition, we 
added comparable corpora, i.e. texts that are not parallel but come from comparable sources and are therefore 
similar in content, again comprising very different text types/genres, e.g. newspaper texts, web crawls, Wikipedia 
articles, Ubuntu localization files, or translated example sentences from a free collaborative online database. 
Furthermore, we calculated Gibbs-Shannon unigram entropies H (Eq. (1)) based on word frequency information 
from the Crúbadán project73 that aims at creating text corpora for a large number of (especially under-resourced) 
languages. In total, we analysed 41 different multilingual corpora (Fig. 1a) consisting of 6513 documents or ~ 3.5 
billion words/ ~ 9.0 billion characters covering 2069 different languages which are spoken as a native language 
by more than 90% of the world population and constitute ~ 46% of all languages that have a standardized written 
representation (see Supplementary Information: “Coverage”).
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We use Prediction by partial matching (PPM), a computational LM originally developed for data 
compression30,74 to calculate the compression rate r (compressed size divided by message length L in symbols) 
as an index of the average prediction complexity for both words and characters as information encoding units47. 
Note that r is directly related to the quantity perplexity that is often used in natural language processing to meas-
ure the quality of a language model, where perplexity is defined as two to the power of r29. In order to compress, 
PPM, a variable-order Markov model, uses a set of up to 32 previous symbols as context to predict the most 
probable next symbol and thus effectively assigns a probability p

(
tN = sj|t

N−1
1

)
 for any symbol type sj ∈ V based 

on the text it has already observed, which is exactly the information that is infeasible to get from human partici-
pants, as we have described above.

In Fig. 1b, we illustrate that PPM is a dynamic and adaptive method: every time the algorithm encounters 
new data, it updates its language model and is thus able to detect changing statistical characteristics of the source. 
With growing input, it gets better in predicting subsequent data67 (see Supplementary Table 1 for an interactive 
illustration), or put differently, PPM learns to exploit the statistical structure of the input, paralleling human 
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Figure 1.   Dataset and entropy estimation. (a) Collected corpora and their geographical distribution. Asterisks 
indicate fully parallel corpora (see Supplementary Information: “Corpora” for details). (b) Illustration of PPM: 
we generated a synthetic string with 6 million (M) symbols from a source emitting two different symbol types 
whose statistical characteristics change every 2 M symbols: symbol types are randomly emitted for the first 2 M 
(expected h = 1.000), the second 2 M symbols are generated by a Hidden Markov sequence (expected h = 0.469), 
the third 2 M are generated by a pseudorandom sequence with mixed long-term dependencies (expected 
h = 0.000); emerald circles represent the local compression rate defined as the number of bits that PPM needs to 
compress the last 1000 symbols divided by 1000; the solid line represents a locally weighted scatterplot smoother 
(“lowess”). As can be seen, PPM successfully detects each pattern (see Methods: “Synthetic dataset” for details). 
((c) and (d)) Compression rates (hollow circles) as a function of length in symbols (characters/words) for the six 
languages of the UNPC illustrate that without prior knowledge of the source, PPM learns to predict by acquiring 
a representation of the probabilistic structure of each language in one single pass. Solid lines represent our three 
parameter ansatz to estimate the asymptotic value of h. NB: For illustration purposes, only a selection of data 
points is shown for each language. (e) The distribution of relative accuracy ratios indicates that the curve can be 
accurately modelled by our ansatz. Box-plot elements throughout this paper are defined as follows: center line, 
median; box limits, first and third quartiles; whiskers as defined by Tukey75; points, outliers.
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language learning41,42 with interesting applications in natural language processing76,77, language production78,79 
and—more generally—machine learning of patterns to predict (into) the future7,79,80. Figure 1c,d visualize this 
online learning behavior for the United Nations Parallel Corpus (UNPC, see Supplementary Information: “Cor-
pora” for details)81 consisting of various documents in the six official languages of the United Nations. Impor-
tantly, h determines how hard it is to make accurate predictions once the statistical structure of the input language 
has been learned31,32. Therefore, when estimating h via compression, it is essential to take into account that the 
algorithm needs (a certain amount of) training to learn how to exploit the statistical structure of the input in 
order to make accurate predictions. This is especially relevant for natural languages where the convergence to 
the underlying source entropy is known to be notoriously slow, because of long-range correlations82,83 and due 
to the fact that a probabilistic model of language remains unknown31,32. We therefore calculate r for subsets of 
increasing length (coloured circles in Fig. 1c,d) and fit a nonlinear extrapolation function given by an ansatz31,32 to 
estimate the asymptotic value of h (solid lines in Fig. 1c,d; see Methods: “Estimating entropy” and Supplementary 
Figs. 2, 3 for details on extrapolation and statistical estimation).

Figure 1c,d visually indicate that our ansatz fits the observed curves very well (solid lines; see Supplementary 
Figs. 4–21 for all corpora, also see Supplementary Information: “Ansatz functions” and Supplementary Tables 2–4 
for details). Figure 1e confirms this impression: 99% of the ~ 5000 compression series show an accuracy ratio, i.e. 
an approximate average percentage difference, between (held-out) observed and predicted values that is within 
1% (see Eq. (8)).

One might want to object that h strongly depends on the writing system. For example, Fig. 1c demonstrates 
that it is indeed considerably more difficult to predict Chinese characters (h = 3.03 bits per symbol (bps)), obvi-
ously due to the fact that written Mandarin Chinese employs a logographic system where individual characters 
typically represent words/morphemes compared to the other five languages that employ alphabetic systems where 
symbols typically represent phonemes (here h ∈ [0.89, 1.51] bps) which affects the capacity of the communication 
channel33,58. However, on the word level (Fig. 1d), Chinese (h = 5.51 bps) occupies a middle ground (h ∈ [4.27, 
6.25] bps). In general, variability in both h and r tends to be smaller for words (median relative standard devia-
tion SDmed = 15.25% for h and SDmed = 11.60% for r) than for characters (SDmed = 32.03% for h and SDmed = 28.13% 
for r; see Supplementary Fig. 22). In what follows, we will take potential influences of the writing system into 
account by using writing system as a covariate and by replicating analyses specifically for documents that use 
the most widely adopted writing system, Latin script (~ 80% of all our documents).

Results
As outlined above, we evaluated the similarity of prediction complexity rankings by computing Spearman cor-
relation coefficients ρ[h(κ), h(ι)] for all corpus pairs ( κ, ι ) where κ  = ι . We restricted computations to all text 
pairs with at least five common languages (see Supplementary Information: “Correlation matrix” for details). On 
the level of words as information encoding units (total number of correlation coefficients, Nρ = 764), the mean 
correlation coefficient is ρmean = 0.67, the median correlation across corpora is ρmed = 0.74 (first quartile Q1 = 0.57). 
The percentage of ρ-coefficients that are above zero is Ρ0 = 96.07%. To put this into perspective, just by chance we 
would expect ~ 50% of all ρ-coefficients to be above zero. To further evaluate the statistical significance of this 
result, we randomly re-arranged the values of h(κ) in each corpus pair to obtain h′(κ) and computed Spearman 
correlation coefficients between h′(κ) and h(ι) , ρ′ = ρ[h′(κ), h(ι)] . As a random baseline, we computed the 9th 
decile for the set of all permuted ρ′-values. This means that 90% of all Nρ′ = 764 ρ′-values show a value that is 
lower than or equal to this random baseline. The percentage of unpermuted ρ-coefficients that are above this 
baseline is ΡR = 92.80%. Putting this into perspective again, just by chance, we would expect ΡR to be ~ 10%. Fig-
ure 2a visualizes this result. A similar pattern arises if we measure h on the character level ( Nρ = 764; ρmean = 0.55; 
ρmed = 0.59; Q1 = 0.35; Ρ0 = 96.86%; ΡR = 79.97%; see Fig. 2b). Even if we compare entropy rates across corpora and 
across symbolic levels, i.e. we correlate the distribution calculated for words in one corpus with the distribu-
tion calculated for characters in another corpus, there tends to be a positive statistical association ( Nρ = 1528; 
ρmean = 0.38; ρmed = 0.37; Q1 = 0.20; Ρ0 = 92.94%; ΡR = 56.74%; see Fig. 2c). Analogous patterns emerge if the compu-
tations are restricted to fully parallel corpora (for words: Nρ = 512; ρmean = 0.69; ρmed = 0.78; Q1 = 0.60; Ρ0 = 95.12%; 
ΡR = 90.62%; see Fig. 2d; for characters: Nρ = 512; ρmean = 0.61; ρmed = 0.68; Q1 = 0.45; Ρ0 = 98.05%; ΡR = 82.42%; 
see Fig. 2e; across symbolic levels: Nρ = 1024; ρmean = 0.44; ρmed = 0.46; Q1 = 0.28; Ρ0 = 94.24%; ΡR = 64.26%; see 
Fig. 2f). Analogous patterns also emerge if the computations are restricted to documents that use Latin script, 
in order to rule out the possibility that these results are mainly driven by the fact that different languages use 
different writing systems (for words: Nρ = 740; ρmean = 0.67; ρmed = 0.74; Q1 = 0.59; Ρ0 = 96.35%; ΡR = 91.22%; see 
Fig. 2g; for characters: Nρ = 740; ρmean = 0.46; ρmed = 0.50; Q1 = 0.24; Ρ0 = 92.70%; ΡR = 64.32%; see Fig. 2h; across 
symbolic levels: Nρ = 1480; ρmean = 0.43; ρmed = 0.48; Q1 = 0.26; Ρ0 = 93.78%; ΡR = 66.28%; see Fig. 2i).

Supplementary Table 6 shows that similar results are obtained if we use r or H instead of h to evaluate the 
similarity of complexity rankings between different corpora. In addition, Supplementary Table 6 also contains 
results where we adjust our prediction complexity estimates for the potential influence of the text length to rule 
out the possibility that our results are mere artefacts resulting from the fact that most, if not all, quantities in the 
context of word frequency distributions vary systematically with the text length61,84,85.

We proceed by validating the above results against data from the Crúbadán project73. Based on word fre-
quency information for 1943 different languages, we calculated Gibbs-Shannon unigram entropies (Eq. (1)) to 
generate a variable HCrúbadán. We then computed ρ[h(κ),HCrúbadán] for each κ among our 40 corpora. Results are 
very similar to the ones presented above if HCrúbadán is correlated with h on the level of words, Nρ = 40; ρmean = 0.54; 
ρmed = 0.51; Q1 = 0.42; Ρ0 = 97.50%; ΡR = 95.00%. Results are comparable but less pronounced if HCrubadan is cor-
related with h on the level of characters, Nρ = 40; ρmean = 0.36; ρmed = 0.30; Q1 = 0.20; Ρ0 = 97.50%; ΡR = 45.00%. 
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These results indicate that it is appropriate to use HCrúbadán as an additional index of prediction complexity in 
what follows.

To test if the similarity of prediction complexity rankings mainly results from the phylogenetic and geographi-
cal relatedness of languages86–88, we tested how well the distribution of h in one corpus can be predicted using its 
distribution in another corpus. To this end, we ran linear mixed effects models (LMM) where random intercepts 
for language family, macro-area and country are included to account for the genealogical and geographic relat-
edness of languages for all corpora. Again, we restricted the computations to all corpus pairs ( κ, ι ) with at least 
five common languages for which genealogical and geographic information was available. We then computed a 
correlation coefficient, ρLMM, that is based on a measure of explained variance by the fixed effects of the LMM89 
and proceeded as above (see Methods: “Evaluating the similarity of complexity rankings” for details). We find that 
the results remain stable (for words: NρLMM = 1482; ρLMM

mean  = 0.60; ρLMM
med  = 0.66; Q1 = 0.45; Ρ0 = 95.95%; ΡR = 91.09%; 

for characters: NρLMM = 1,482; ρLMM
mean  = 0.52; ρLMM

med  = 0.56; Q1 = 0.30; Ρ0 = 96.90%; ΡR = 81.98%; across symbolic 
levels: NρLMM = 3042; ρLMM

mean  = 0.30; ρLMM
med  = 0.27; Q1 = 0.13; Ρ0 = 91.29%; ΡR = 61.14%). Similarly, we can use h to 

predict HCrúbadán (for h measured on the word level: NρLMM = 39; ρLMM
mean  = 0.36; ρLMM

med  = 0.35; Q1 = 0.19; Ρ0 = 97.44%; 
ΡR = 82.05%; for h measured on the characters level: NρLMM = 39; ρLMM

mean  = 0.23; ρLMM
med  = 0.14; Q1 = 0.06; Ρ0 = 94.87%; 

ΡR = 41.03%). Supplementary Table 6 shows that similar results are obtained if we use r or H instead of h. This 
table also contains results where computations are restricted to fully parallel corpora or Latin script and shows 
that results remain stable if the potential influence of the text length is controlled for.

If the equi-complexity hypothesis holds true, there cannot be any association between prediction complexity 
and language external factors. However, in what follows we will demonstrate that the estimated number of lan-
guage speakers, as proxy for population structure90, predicts prediction complexity. To account for the potential 
non-independence of data-points described above, we ran separate LMMs by considering a set of models, which 
corresponds to all possible combinations of inclusions and exclusions of the following covariates: (i) (crossed) 
random intercepts for the following groups: corpus, language family, language, macro-area, country and writing 
script; (ii) random slopes (i.e. we allow the effect of population size to vary across different groups) for all groups 
except language (since speaker population size does not vary within languages) and (iii) a potential fixed effect 
for the (log of) speaker population size (see Methods: “Differences across populations” for details). As a means 
of selecting between models, we use Akaike’s information criterion AIC91 where lower values indicate a more apt 

Figure 2.   Testing the similarity of prediction complexity rankings. Distribution of pairwise Spearman 
correlations for the measure of prediction complexity h between all corpus pairs for all corpora (a–c), fully 
parallel corpora (d–f) and documents that use Latin script (g–i). (a,d,f) display the results for words as 
information encoding units, while (b,e,h) depict the results for characters as information encoding units. (c,f,i) 
visualize the cross-symbolic level results, showing the correlation distribution between words in one corpus and 
characters in another corpus. The value presented in the top-left corner represents Ρ0, indicating the percentage 
of ρ-coefficients that are above zero as shown by the orange line. The value in the bottom-left corner represents 
ΡR, representing the percentage of ρ-coefficients that surpass the random baseline as shown by the blue line.
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model. On both symbolic levels, we fitted a total of 550 different models. On the word level, the model with the 
lowest AIC includes random intercepts for corpus, language family, language, macro-area, country and writing 
script and random slopes for corpus, language family and country. The estimated effect of speaker population 
size, βLMER = 0.054 (standard error s.e. = 0.013; number of cases N = 3853) is significant at p < 0.001. To further test 
whether the inclusion of the fixed effect for speaker population size is warranted, we selected the best LMM that 
does not include a fixed effect or random slopes for speaker population size and calculated ΔAIC, i.e. the differ-
ence between the AIC-value for the model without the inclusion of speaker population size and the full model 
from above. Only if this value is positive, the inclusion of the speaker population size seems appropriate and 
the greater the value of ΔAIC, the greater the support for the full model. Here a value of ΔAIC = 30.71 strongly 
supports the inclusion of speaker population size in the model92. On the character level, the best model includes 
random intercepts for corpus, language family, language, macro-area, country and writing script and random 
slopes for corpus, language family and writing script. The coefficient for βLMER = 0.058 (s.e. = 0.027; N = 3853) 
is significant at p < 0.05. A value of ΔAIC = 42.56 again supports the inclusion of speaker population size. We 
then fit additional models for HCrúbadán as the outcome. Here, models do not contain a random effect for corpus, 
but LMMs additionally contain fixed effects for text length, available number of documents (both logged) and 
a binary variable indicating whether the word frequency list is truncated to account for differences in the way 
different Crúbadán word lists were generated (see Supplementary information: S3.8 for details). In total, we fit 
194 different models. The best model includes random intercepts for language family, language, macro-area, 
country and writing script and random slopes for language family, macro-area, country and writing script. The 
coefficient for βLMER = 0.160 (s.e. = 0.029; N = 1914) is significant at p < 0.001. A value of ΔAIC = 130.65 again sup-
ports the inclusion of speaker population size into the model. In sum, these results indicate that languages with 
more speakers tend to have a higher prediction complexity which in turn questions the idea that all languages are 
equally complex. Additional results for r and H as outcome are presented in Supplementary Table 7. This table 
also contains results where computations are restricted to fully parallel corpora and shows that results remain 
stable if the potential influence of the text length is controlled for.

Finally, we want to discuss and examine several potential limitations and extensions of our study.
First, we tested if the obtained similarity of language complexity rankings between different corpora can 

mainly be attributed to the degree that different languages make use of inflectional morphology25. We used the 
Treetagger93 with a corresponding language-specific parameter file to lemmatize 16 translations of the European 
constitution (EUconst, see Supplementary Information: “Corpora”) prior to estimation of h on both symbolic 
levels to remove the effect of inflectional morphology25 and to generate a variable h(EUconstlemma) . We then com-
puted ρ[h(κ), h(EUconstlemma)] for all 38 corpora that share at least five languages with EUconst. Results are sta-
ble for lemmatized texts on both symbolic levels, words: Nρ = 38; ρmean = 0.57; ρmed = 0.56; Q1 = 0.42; Ρ0 = 100.00%; 
ΡR = 71.05%; characters: Nρ = 38; ρmean = 0.55; ρmed = 0.59; Q1 = 0.46; Ρ0 = 97.37%; ΡR = 76.32%. Hence, our overall 
results still stand, even if we control for differences in inflectional morphology.

Secondly, due to the large amount of textual data, we used an off-the-shelf compressor that is optimized 
for speed and memory usage7,32, 7-zip PPMd94. While PPM consistently performs well on text compression 
benchmarks7,79, its language model is rather simple. To rule out the possibility that more complex/larger lan-
guage models would lead to different results, we compressed the parallel BibleOT corpus (see Supplementary 
Information: “Corpora”) again, but used a much more sophisticated algorithm called CMIX. Compared to PPMd, 
CMIX uses an ensemble of several thousand of independent prediction models that are combined using different 
deep neural network architectures79,95,96 and some of the contexts used for prediction are allowed to be non-
contiguous in order to capture longer-term dependencies79. CMIX achieves state-of-the-art compression rates 
at the expense of much higher CPU/memory usage. In addition, CMIX is slower than PPMd by several orders of 
magnitude (Supplementary Table 8 shows that it takes CMIX on average ~ 4724 times longer to compress than 
PPMd). Instead of using an extrapolation approach, we therefore only used CMIX to compute compression rates 
r(BibleOTCMIX) . We then computed ρ[h(κ), r(BibleOTCMIX)] for all 38 corpora that share at least five languages 
with BibleOT. Again, the results support the overall patterns, with Nρ = 38; ρmean = 0.80; ρmed = 0.84; Q1 = 0.75; 
Ρ0 = 97.37%; ΡR = 97.37% for words and Nρ = 38; ρmean = 0.60; ρmed = 0.63; Q1 = 0.52; Ρ0 = 100.00%; ΡR = 97.37% for 
characters. In conclusion, there is no indication that the type of compressing algorithm influences our results.

Thirdly, modern language models are often not trained on either the level of words or the level of characters, 
but on the sub-word level63. To test this, we used the BibleOT corpus again and tokenized each text into sub-word 
units by byte pair encoding (BPE)54,97 which plays an important role in many state-of-the-art natural language 
model applications98,99 and provides strong baseline results on a multilingual corpus100. Applying BPE results 
in a sequence of sub-word units, e.g. “|he |may |give |me |a |kin|dly |re|cep|tion |”. We compressed each such 
sequence with CMIX and computed r(BibleOTBPE

CMIX) ; see Methods: “Analyses using CMIX” for details. We then 
computed ρ

[
h(κ), r

(
BibleOTBPE

CMIX

)]
 . Results indicate that a CMIX BPE model also supports our results, with Nρ 

= 38; ρmean = 0.67; ρmed = 0.67; Q1 = 0.62; Ρ0 = 97.37%; ΡR = 97.37% for words and Nρ = 38; ρmean = 0.57; ρmed = 0.59; 
Q1 = 0.50; Ρ0 = 100.00%; ΡR = 89.47% for characters. So, the level of analysis (words, characters, sub-word units) 
does not influence the results.

Fourthly, our study is confined to written language. To test a potential connection to spoken language, we 
use data from the VoxClamantis corpus101 that is derived from audio readings of the New Testament of the Bible. 
We prepared sequences of phonemes for 29 languages and compressed each such sequence with CMIX and 
computed r

(
VoxClamantis

phoneme
CMIX

)
 and computed Spearman correlations with h(κ) based on the written corpora. 

On the word level, we find that there is only a comparatively weak association, with Nρ = 34; ρmean = 0.18; 
ρmed = 0.11; Q1 = –0.03. While only ΡR = 11.76% of all correlation coefficients are above the random baseline, 
Ρ0 = 73.53% are above zero. The statistical associations are much more pronounced on the character level with 
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Nρ = 34; ρmean = 0.37; ρmed = 0.43; Q1 = 0.14. Here, Ρ0 = 85.29% of all coefficients are above zero and ΡR = 23.53% 
are above the random baseline. To further test the equi-complexity hypothesis in this context, we ran a total of 
27 LMMs with the (log of) r

(
VoxClamantis

phoneme
CMIX

)
 as the outcome and combinations of random intercepts and 

slopes for language family, macro-area and country (see Methods: “Analyses using CMIX” for details). The model 
with the lowest AIC includes random intercepts for language family, macro-area and country and random slopes 
for language family and country. As above, the coefficient for speaker population size is positive with βLMER = 0.025 
(s.e. = 0.011; N = 28) and is significant at p < 0.05. We believe it is important to emphasize that these results are 
preliminary in nature. The limited sample size, both in terms of available languages and sequence length, as well 
as the fact that the corpus consists entirely of Bible readings of varying quantity and quality per language, and 
other caveats101, make it premature to draw definitive conclusions regarding the support or lack thereof for our 
findings in written language. Nevertheless, we believe that the results show that further investigation of spoken 
language in this context would be an interesting and important avenue for future research.

Discussion
A central goal of linguistics is to understand the diverse ways in which human language can be organized. In 
this paper, we present the results of a large cross-linguistic analysis of written language that we conducted to 
test the equi-complexity hypothesis which assumes that all languages are (in some sense) equally complex. We 
operationalized our key quantity of interest, prediction complexity F , in information-theoretic terms as the mini-
mum number of guesses that are needed on average to correctly predict subsequent linguistic material based on 
the preceding context. All other things being equal, we defined a language A to be more complex than another 
language B, if FA > FB. In the limit, F converges to the average per-symbol information content or entropy rate h 
that both measures how much choice a writer has when selecting successive symbols and quantifies the amount 
of uncertainty when predicting upcoming symbols. We argued that computational language models can be used 
to estimate h since training such models aims to minimize F. Based on this logic, we presented a method that 
can be used to statistically infer the asymptotic value of h based on computing compression rates for strings of 
increasing lengths. Equipped with this information-theoretic estimation framework, we compiled a database 
consisting of a total of 41 different multilingual parallel and comparable corpora comprising a large variety of dif-
ferent text types. In total, we estimated h for more than 6000 texts (Fig. 1). To test the equi-complexity hypothesis, 
we evaluated the similarity of prediction complexity rankings by computing Spearman correlation coefficients 
between h(κ) and h(ι) for all corpus pairs ( κ, ι ). We argued that it would constitute evidence in favour of the 
equi-complexity hypothesis if the mean value of ρ[h(κ), h(ι)] would be close to zero. In a series of quantitative 
analyses, we showed that this is not the case. By thoroughly evaluating the similarity of prediction complexity 
rankings, we arrived at our main empirical finding: a language with high/low entropy rate in one corpus also 
tends to be more/less complex in another corpus (Fig. 2 and Supplementary Table 6). As an additional test of 
the equi-complexity hypothesis, we then examined whether the estimated number of speakers predicts predic-
tion complexity. Controlling for the potential non-independence of data points due to the phylogenetic and 
geographical relatedness of languages in a mixed effects modeling approach, we showed that both parametric 
p-values and information-theoretic differences in AIC support the idea that speaker population size is a signifi-
cant predictor of h (see Supplementary Table 7). We argued that this association between population structure 
and prediction complexity also questions the equi-complexity hypothesis, because languages with more speak-
ers—on average—seem to be more complex.

The extent to which one finds our results convincing certainly depends on the extent to which one considers 
our information-theoretical measure to be a suitable proxy for the overall complexity of a language. Given the 
close link to the surprisal theory of language comprehension discussed above and the success of contemporary 
language models, we are cautiously optimistic. Nevertheless, we admit that it would be highly beneficial to find 
out how well our information-theoretic operationalization of complexity relates to more traditional notions of 
language complexity. In the absence of a clear benchmark for evaluating this, a potential fruitful starting point 
would be to use Grambank, a recently published global database of grammatical features of unprecedented size102 
and test, for example, if grammatical complexity in the sense of fusion and informativity as specified by Ref.103 
predicts our measure of prediction complexity.

On the other hand, caution is needed when trying to compare a traditional linguistic notion of complexity 
with the measure of predictive complexity we use. To give an example from phonology, a language with a canoni-
cal syllable pattern of CV would typically be considered to have a simpler syllable structure than a language 
with a (C)(C)CV(C) pattern104. This judgment arises naturally from the fact that a description of the permitted 
phoneme sequences is shorter for the CV-type. To be more specific, we may compare a hypothetical CV language 
L1 with five consonants and five vowels with another hypothetical (C)(C)CV(C) language L2 featuring the same 
phoneme inventory. The syllable type inventory of L1 can be described by the regular expression [srptk][aeiou]. 
For L2, let us assume that it follows a typologically widespread pattern in that complex onsets are restricted to 
certain clusters, in our case to /pr/, /kr/, /tr/, /ps/, /ks/, /ts/, /spr/, /str/, /skr/. The optional coda can only be one 
of /s/ or /r/. The regular expression for L2 syllables is obviously much longer: (s[ptk]r|[ptk][sr]|[srptk])[aeiou]
[sr]? Also, the average number of phonemes per syllable, often taken as a proxy for syllable complexity105, is 
necessarily higher for L2 than for L1. Nevertheless, mainly due to the restrictions in consonantal patterns, the 
prediction complexity of L2 will, all other things being equal, be slightly lower than that of L1 (see Methods: 
“Syllable patterns” for a computer simulation). If we modify our assumptions to the effect that in multi-syllable 
words of L2, one of the vowels is dominant in non-first syllables (perhaps because L2 has fixed first-syllable stress 
and vowels are typically reduced to schwa in unstressed syllables), while in L1 all vowels are equiprobable in all 
word positions, then L2 will even have a notably smaller entropy rate h than L1 (see Methods: “Syllable patterns” 
for a computer simulation). This simple picture becomes severely more complicated as soon as interference with 
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other factors is taken into consideration, such as marked prevalence of certain phonemes in the most frequent 
word types or in frequent affixes.

One of the reasons for the observed discrepancy between more traditional complexity measures, such as 
an intuitive qualitative ‘description length’ or phoneme counts, and prediction complexity is that the latter, as 
a stochastic measure, is based on a much richer set of frequency-related data. Informally speaking, to calculate 
the entropy rate of a stochastic process, the probabilities of all possible sequences produced by that process have 
to be taken into account. It goes without saying that this does not invalidate the utility of any established criteria 
of structural complexity, which may play important roles in linguistic theories of domains such as phonology 
or morphology. As our miniature example suggests, each such criterion has a specific influence on the global 
measure of prediction complexity, albeit not always in a very straightforward or intuitive way.

Furthermore, it would be worthwhile to conduct a more comprehensive examination to determine if our 
findings extend beyond written language and are applicable to spoken language as well. The preliminary results 
we have presented, which are based on the VoxClamantis corpus101, can serve only as a starting point in that 
direction. Similarly, while we have demonstrated that our findings extend beyond a simple compression algorithm 
like PPM to a more complex one like CMIX, we believe that conducting a more comprehensive examination 
using large language models based on deep neural networks, such as transformers106, would also be an important 
avenue for future research.

Against this background, our study offers some points of departure for future studies. For example, we showed 
that languages with more speakers tend to have higher prediction complexity. At first sight, this result stands 
in contrast to the ’linguistic niche hypothesis’ that argues that languages spoken in larger communities tend to 
be less complex3,107–110. However, note that our ansatz function has three parameters (see Eqs. (7), (8), (9)): the 
limiting entropy rate h, a proportionality constant and an exponent b. While h quantifies how difficult it is to 
predict, b quantifies how difficult it is to learn to predict, as aptly put by Ref.32: lower b-values are indicative of 
slower convergence, i.e. learning is more difficult (see Supplementary Fig. 3 for an illustration). In Supplementary 
Figs. 23 and 24 we show that there tends to be a positive statistical association between b and h that indicates 
that languages that are harder to predict tend to be easier/faster to learn for PPM. This indirectly implies that 
languages with more speakers should—on average—be easier to learn. Systematically analyzing this relationship 
could be the subject of a future paper.

In sum, our study highlights the potential of large-scale cross-linguistic analyses in enhancing our under-
standing of different phenomena within the domains of human languages, cognition, and culture.

Methods
Corpora.  In total, we analysed 41 different multilingual corpora by compressing ~ 30.2 M (sub-)strings of 
varying lengths. Details regarding all corpora used in this paper, data preparation and compression can be found 
in Supplementary Information: Corpora. In Supplementary Fig. 1, we visualize several important aspects of our 
database (also see Supplementary Table 4). Supplementary Fig. 1a shows that most corpora only consist of a few 
tens of texts (Nmedian = 40). For some corpora, the reason for this is rather simple, e.g. the European constitution 
was only translated into the languages of the European Union. However, for other corpora, e.g. the 13 subtitle 
corpora, translations into further languages are not available. On the other side of the spectrum, we have 11 cor-
pora that consist of more than 100 different documents. Supplementary Fig. 1b complements this observation 
by showing that our database is also unbalanced at the language level: while we have more than 100 languages 
with at least 10 available data points, i.e. documents, we only have less than four available data points for most 
languages (~ 84%). This reflects the fact that especially for languages that are spoken only by a small number of 
people, there exists only a very limited number of documents that are electronically available73. Correspondingly, 
Supplementary Fig. 1c shows that our database is biased towards languages with more speakers. For example, 
while the estimate for the median number of speakers for all documented languages is 8000, the median number 
for which we have available data is 30000. Finally, Supplementary Fig. 1d shows that many documents are rather 
short, e.g. 25% of the documents are below 14575 characters or 3181 words. However, 200 documents are longer 
than 1 million characters, 49 documents are longer than 10 million characters and the longest documents are 
several hundred million words or more than a billion characters long. We adapt our analysis strategy accord-
ingly by both using state-of-the-art statistical methods that allow for unbalanced datasets and by statistically 
comparing the diversity structure found in smaller corpora (i.e. corpora consisting of shorter documents and/
or corpora with only a limited number of available documents) with the underlying structure found in bigger 
corpora (i.e. longer documents and/or available data points for many languages). Here, the idea is that if the 
results in both smaller and bigger corpora point in the same direction, then this strengthens the claim that those 
results are more than just an artefact resulting from an unbalanced database. In addition, we use both parametric 
and non-parametric methods to evaluate the results. Supplementary Fig. 2 visualizes how we adapt Shannon’s 
information-theoretic view of communication to analyse our database.

Estimating entropy.  To estimate h(κ) computationally, we use a data compression algorithm, since the 
true probability distribution for natural language is unknown7,31. The algorithm generates a language model, i.e. 
an estimate of the probability distribution of κ that can then be used for encoding via arithmetic coding7,32,111. 
We use PPM as implemented in the 7-zip software package, which is based on Dmitry Shkarin’s PPMd94. The 
algorithm makes an assumption of the Markov property: To encode/predict the next symbol, the algorithm 
uses the last o symbols that immediately precede the symbol of interest. If the order o context has not been seen 
before, the algorithm attempts to make a prediction based on the last o-1 symbols. This is repeated until a match 
is found, or, if no match is found until order 0, then a fixed prediction is made. In general, let N(κ) denote the 
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size (in symbols) of text κ and let R(κ) denote the size (in bits) of the compressed text κ . For brevity, we write h , 
R and N instead of h(κ) , R(κ) and N(κ) in what follows.

Then the compression rate r = R/N is an upper bound on the underlying entropy rate h(κ) , i.e.:

Importantly, h is defined in the limit, i.e. for a text whose length N tends to infinity28,47. Given stationarity 
and ergodicity28, the following equality holds for universal compressors32:

Or put differently, the entropy rate measures how difficult it is to predict subsequent text based on the pre-
ceding input when the optimal compression scheme is known32. Equation (6) implies that convergence to the 
source entropy is only guaranteed in the limit112, i.e. when the text size approaches infinity. One way to take 
into account the dependence on N is to use extrapolation when estimating h via compression32. However, the 
(probabilistic) relationship between (the convergence of) h and N is unknown. To estimate h, we use a variant 
of the following ansatz suggested by ref.31:

where A > 0, b > 0 and—assuming that the entropy rate is positive32—h > 0 ; rn =
(
Rn
1

)
/n denotes the number 

of bits per symbol that are needed to compress the first n symbols of κ. In general, the idea of the ansatz is to 
calculate the compression rate for different sub-sequences of κ of increasing length. This gives us a measure of 
how well language learning succeeds67,113. For example, we can feed the compressor with the first n = 1⋅m sym-
bols and calculate the compression rate for this subsequence where m is some pre-defined chunk size, e.g. 1000 
symbols. After that, the compression rate is calculated for the first n = 2⋅m symbols and the compression rate is 
calculated again. This procedure is repeated until the end of κ is reached. The resulting series of compression 
rates for texts that consist of 1, 2, ...,

⌊
N
m

⌋
 chunks can then be used to fit the three parameters to the data. We fit 

the following nonlinear ansatz function by log-least squares:

where ón is an independent and identically distributed (i.i.d.) error term and exp() denotes the exponential func-
tion (see Supplementary Information: "Ansatz functions" where we discuss other ansatz functions and different 
error specifications that have been suggested in the literature31,32,114 and justify our choice). Since we want A and 
b to be positive, we set interval constraints that make sure that the optimization algorithm will not search in the 
negative subspace by fitting both parameters as exponentials, i.e. we estimate A′ = log(A) and b′ = log(b) . The 
limiting entropy rate of Eq. (7) can be recovered from Eq. (8) as h = exp(h∗).

Since achieving convergence of the parameter estimates turned out to be difficult, we approximate initial 
values in linear space, i.e., for each value of φ = 0.01, 0.02, …, 10, we calculate � =

logn
nϕ  and fit the following 

linear regression by OLS:

where ón is an i.i.d. error term. To provide initial values to fit Eq. (8), we pick the solution of Eq. (9) where the 
root mean squared error is smallest and where βA > 0 , then h∗ is initialized as βh,A′ is initialized as exp(βA) and 
b′ is initialized as exp(ϕm) where φm denotes the value of φ corresponding to the selected Φ.

As written above, the model is fit by log-least squares, i.e.
(
log

(
r̂n
)
− log(rn)

)2
= log

(
r̂n/rn

)2 where rn and r̂l 
denote the observed and the predicted compression rate, respectively. To assess the model fit, we fit both Eqs. (8) 
and (9) to only the first 90% of the data points and use the last 10% as test data. Let τ = 1, 2, …, Τ denote the 
holdout data points. On this basis, we calculate the model fit as a measure of prediction accuracy115:

Μ-values are reported as percentages by multiplying the above equation by 100. Note that as long as the dif-
ference between rτ and r̂τ is relatively small, log(r̂τ /rτ ) ≈ (r̂τ − rτ )/rτ . Thus, we can interpret Μ as measuring 
the approximate (absolute) average percentage difference between rτ and r̂τ.

In order to avoid relying too much on the ansatz whose appropriateness can only be verified numerically, 
we additionally use the compression rate (denoted as r in what follows) at 

⌊
N
m

⌋
 as an observed unbiased upper-

bound-estimate for the underlying entropy rate.

Synthetic dataset.  The source emits two different symbols, “a” or “b”; for the first 2 M symbol tokens, 
symbols are emitted randomly. Thus, h = − (0.5 · log2(0.5) + 0.5 · log2(0.5)) = 1. For the second 2 M tokens, we 
generated a Hidden Markov Model sequence with memory 10 as described in Ref.68: if the last symbol is equal 
to the symbol observed 10 tokens before, the next symbol in the sequence will be “a” with probability p = 0.1 and 
“b” with p = 0.9. If the last symbol is not equal to the symbol observed 10 tokens before, the next symbol type will 

(5)r ≥ h.

(6)lim
N→∞

r = h.

(7)rn = h+ A ·
logn

nb
,

(8)rn = exp

(
h
∗ + exp(A′) ·

logn

nexp(b
′)

)
+ ón,

(9)log(rn) = βh + βA�+ ón,

(10)M =
1

T

√√√√
T∑

τ=1

log
(
r̂τ /rτ

)2
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be “a” with probability p = 0.9 and “b” with p = 0.1. Thus, h = − (0.1 · log2(0.1) + 0.9 · log2(0.9)) ≈ 0.469. For the 
third 2  M tokens, we generated a pseudorandom sequence68: with probability p = 1, the next symbol in the 
sequence will be “b” if (i) the last symbol is both equal to the symbol observed 10 tokens before and also equal to 
the symbol observed 20 tokens before or (ii) the last symbol is both not equal to the symbol observed 10 tokens 
before and also not equal to the symbol observed 20 tokens before. In all other cases, the next symbol will be “a” 
with probability p = 1. Since prediction based on context is deterministic for this type of source, h = 0. We used 
PPM to compress successively larger chunks of the resulting corpus, proceeding in steps of 1000 symbols and 
calculated the local compression rate as the number of bits that PPM needs to compress the last 1000 symbols 
divided by 1000, i.e. rlocl = R

(
Xl
l−103

)
/103.

Evaluating the similarity of complexity rankings.  For the LMM analyses, we regressed Vc1 on a fixed 
effect for Vc2 where V  denotes one of the following variables r, h, H and HCrúbadán. Both outcome and predictor 
were logged and computations were restricted to corpus pairs with at least 5 available shared languages. We fitted 
the following crossed-effects models86,116:

for i = 1,…, I different languages (identified by their ISO codes), m = 1,…, M macro-areas (Africa, Australia, 
Eurasia, North America, Papunesia or South America), a = 1,…, A countries and g = 1,…, G language families 
with µm ∼ Gaussian(0, σ 2

m) ; αa ∼ Gaussian(0, σ 2
a ) ; ςg ∼ Gaussian(0, σ 2

g ) ; εimag ∼ Gaussian(0, σ 2
ε ) all indepen-

dently and where σ 2
m , σ 2

a  , σ 2
g  and σ 2

ε  are the variances of µm , αa , ςg and εimag.The fixed portion of the model, 
β0 + β1V

c2
imag is analogous to the linear predictor from a standard OLS regression and the random portion of the 

model, i.e. µm + αa + ςg + εimag , incorporates group-specific shifts for language family, country and macro-
area to account for genealogical and geographic relatedness of languages86, i.e. σ 2

m , σ 2
a  and σ 2

g  (languages were 
excluded from the analyses if information for one or more of the grouping factors was missing). All LMMs were 
fitted by restricted maximum likelihood (REML)89. Note that for some corpus pairs not all groups did vary, for 
example because all languages are located in one macro-area (e.g., in case of the European Constitution data, 
all languages are located in the Eurasian macro-area). In a similar vein, fitting an LMM does not make much 
sense if each group of each random factor consists of exactly one member. To solve this problem, our model 
automatically checks the composition of each grouping factor for each corpus pair and only included it if it 
consisted of at least two different groups and if at least one of those groups consisted of more than one member. 
Models were fitted with gradient-based maximization first. If gradient-based maximization did not converge, 
models were re-fitted with expectation–maximization (EM) only and we accepted any solution after a maximal 
number of EM iterations of 1000.

As shown in Ref.89, Eq. (27), the variance of the fixed component of the model, can be estimated as:

This can be computed by predicting values based on the estimated fixed effects of the model followed by 
a calculation of the variance of these fitted values. The variance of the full model can then be decomposed as:

On this basis, Ref.89, Eq. (26), define an R2 as measure of explained variance of the fixed portion (m indicates 
marginal R2) of the LMM as follows:

We calculated R2
LMM(m) for each model. To generate random baselines, we randomly permuted the values 

of Vc1 and re-calculated R2
LMM(m) and proceeded as for the Spearman version described above. Our correlation 

measure is computed as follows:

where sign(β1 ) returns the sign of β1.

Differences across populations.  Above, we present results for h as outcome; in Supplementary Table 7 
we present additional results for r, H and HCrubadan as outcomes. To enhance convergence, the outcome was 
standardized per corpus, i.e. the corpus-specific mean was subtracted from each observed value and the result 
was divided by the corpus-specific standard deviation for the models with h, r and H as the outcome. As writ-
ten in the main part of the paper, our covariate candidate set of models contains random intercepts for corpus, 
language family, language, macro-area, country and writing script and random slopes for corpus, language fam-
ily, macro-area, country and writing script. All effects are assumed to be crossed. Note, however, that—in the 
terminology of Ref.117—countries are explicitly nested within macro-areas, i.e. each country occurs in exactly 
one macro-area. In the same sense, languages are explicitly nested within language families.

(11)Vc1
imag = β0 + β1V

c2
imag + µm + αa + ςg + εimag ,

(12)σ 2
f = var

(
β1V

c2
imag

)
.

(13)σ 2
f + σ 2

m + σ 2
a + σ 2

g + σ 2
ε .

(14)R2
LMM(m) =

σ 2
f

σ 2
f + σ 2

m + σ 2
a + σ 2

g + σ 2
ε

.

(15)ρLMM = sign(β1)
√

R2
LMM(m),
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To compute differences in AIC, ΔAIC, we additionally fit LMMs without a fixed effect for speaker population 
size. Note that in models without a fixed effect for speaker population size, we also exclude potential random 
slopes. We then compute ΔAIC between the full model that includes a fixed effect and potential random slopes 
for speaker population size with a reduced model that does not include a fixed effect or random slopes for speaker 
population size but otherwise has the same fixed and random effect structure. We model all intercepts and 
slopes as i.i.d. and to be independently from each other. Models were fitted with gradient-based maximization 
and—since our primary focus in this set of analyses is on estimating and comparing different fixed effects struc-
tures—via maximum likelihood (ML)118–120. We accepted any solution after a maximal number of 100 iterations. 
Models with HCrubadan as outcome do not contain a random effect for corpus (correspondingly HCrubadan was not 
standardized), but models additionally contain fixed effects for text length, available number of documents (both 
logged) and a binary variable indicating whether the word frequency list is truncated (no/yes; see Supplementary 
Information: 3.7 for details). Of all converged model, we then selected the model with the lowest AIC and extract 
the corresponding estimate for β1 and its parametric (two-sided) p-value that is based on the absolute value of 
the z-statistic, defined as z = β̂1/σ̂β̂1

 where σ̂
β̂1

 is the standard error of β̂1.

Analyses using CMIX.  We downloaded the most current version (v19) of CMIX from https://​byron​knoll.​
com/​cmix.​html. For this analysis, each Bible translation70 was split into 66 separate books of the Biblical canon. 
We only kept translations with available information for all 39 books of the Old Testament (OT) of the Christian 
biblical canon. For languages with more than one available OT translation, we randomly sampled one transla-
tion. In total, we have available translations for 147 different languages. We used CMIX without further pre-
processing and without an additional dictionary in each case. To compute r(BibleOTBPE

CMIX) , byte pair encoding97 
was applied to each translation before compression. Following Ref.54, the number of BPE merges was set to 0.4· V 
where V is the number of different word types observed in a given translation. After tokenization into sub-word 
units, we replaced each distinct sub-word unit by a unique symbol and CMIX is then used to compress both 
the resulting symbol sequence and the mapping of sub-word units to 1–4 byte symbols in order to the calculate 
compression ratio for each available language i as follows:

where Rseq
i

(
BibleOTBPE

CMIX

)
 refers to the compressed length of the BP-encoded symbol sequence, 

Rdic
i

(
BibleOTBPE

CMIX

)
 refers to the compressed length of the mapping of sub-word units to byte symbols and 

Nchars
i  denotes the length of text i in characters.

The Vox Clamantis data was pre-processed as follows. We use high quality phoneme level alignments for 29 
languages that are based on the multilingual grapheme-to-phoneme (G2P) system Epitran available from https://​
osf.​io/​bc2ns/?​view_​only=​ff23d​d6bf3​324b1​1b834​ea4bd​8d7e6​c9121. Since the Vox Clamantis files are not aligned 
on the verse level, we processed the time-marked conversation (CTM) files to create a sequence of phonemes 
for each combination of bible chapter and ISO code. To map the Wilderness language codes to ISO codes, we 
used the information also provided by the Vox Clamantis team. If there were multiple phoneme sequences for 
an ISO code, we selected the longest available sequence. Our pre-processing R script for the Vox Clamantis data 
is also available from the repository accompanying the present article.

For each language, we then extracted a consecutive sequence of Nphoneme =156832 phoneme tokens where 
Nphoneme is equal to the length of the shortest available sequence (Tajiki). We then prepared representations of 
each sequence where each phoneme type is mapped to one 2 byte Unicode symbol. The compression ratio for 
each available language i is computed as follows:

where (Rseq
i

(
VoxClamantis

phoneme
CMIX

)
 refers to the compressed length of the BP-encoded symbol sequence, 

Rdic
i

(
VoxClamantis

phoneme
CMIX

)
 refers to the compressed length of the mapping of sub-word units to byte 

symbols.
For the LMM models, we use the log of ri

(
VoxClamantis

phoneme
CMIX

)
 as the outcome. Our covariate candidate 

set of models contains random intercepts and slopes for language family, macro-area and country. We accepted 
any solution after a maximal number of 1000 iterations. The remaining details are analogous to the other LMMs 
described above (see Methods: “Differences across populations”).

Syllable patterns.  In a computer simulation, we assumed that, in both languages L1 and L2, word tokens 
in a text have 1, 2, 3 syllables with probabilities 0.3, 0.5, 0.2. In L1, each syllable token in a randomly generated 
pseudo-text of 300 million phonemes length was taken to consist of one of five equiprobable consonants, fol-
lowed by one of five equiprobable vowels. In L2, syllable tokens were set to have an onset of 1, 2, 3 consonants 
with probabilities 0.4, 0.3, 0.3 and a one-consonant coda with probability 0.5; for each of the three onset patterns, 
the permitted consonants resp. consonant clusters were assumed equiprobable, while syllables with a coda were 
set to have final /s/ and /r/ with probabilities 0.7 and 0.3. When the five vowels are taken to be equiprobable 
in both L1 and L2 for all syllable tokens, then the PPM-based compression rate of random L2 texts converged 

(16)ri
(
BibleOTBPE

CMIX

)
=

(
R
seq
i

(
BibleOTBPE

CMIX

)
+ Rdic

i

(
BibleOTBPE
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))
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i

,

(17)ri

(
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CMIX

)
=

(
R
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i

(
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CMIX

)
+ Rdic

i

(
VoxClamantis
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CMIX

))
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,
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toward a minimally smaller number than for L1, with rL1 ≈ 0.289 and rL2 ≈ 0.288 . After we changed the L2 
vowel probabilities for non-word-initial syllables to 0.01, 0.9, 0.04, 0.01, 0.04 for /a/, /e/, /i/, /o/, /u/, keeping all 
other parameters, then, for L2, the average compression rate dropped to rL2 ≈ 0.262.

Data availability
All parallel text data were taken from the sources mentioned in the supplementary information. Code and data 
are described in Supplementary Information: “Code and Data” and are available at https://​osf.​io/​f5mke/.
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